Further study of the intrinsic safety of internally shorted lithium and lithium-ion cells within methane-air.

نویسندگان

  • Thomas H Dubaniewicz
  • Joseph P DuCarme
چکیده

National Institute for Occupational Safety and Health (NIOSH) researchers continue to study the potential for lithium and lithium-ion battery thermal runaway from an internal short circuit in equipment for use in underground coal mines. Researchers conducted cell crush tests using a plastic wedge within a 20-L explosion-containment chamber filled with 6.5% CH4-air to simulate the mining hazard. The present work extends earlier findings to include a study of LiFePO4 cells crushed while under charge, prismatic form factor LiCoO2 cells, primary spiral-wound constructed LiMnO2 cells, and crush speed influence on thermal runaway susceptibility. The plastic wedge crush was a more severe test than the flat plate crush with a prismatic format cell. Test results indicate that prismatic Saft MP 174565 LiCoO2 and primary spiral-wound Saft FRIWO M52EX LiMnO2 cells pose a CH4-air ignition hazard from internal short circuit. Under specified test conditions, A123 systems ANR26650M1A LiFePO4 cylindrical cells produced no chamber ignitions while under a charge of up to 5 A. Common spiral-wound cell separators are too thin to meet intrinsic safety standards provisions for distance through solid insulation, suggesting that a hard internal short circuit within these cells should be considered for intrinsic safety evaluation purposes, even as a non-countable fault. Observed flames from a LiMnO2 spiral-wound cell after a chamber ignition within an inert atmosphere indicate a sustained exothermic reaction within the cell. The influence of crush speed on ignitions under specified test conditions was not statistically significant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studying lithium-ion battery packs cooling system using water-nanofluids composition

In this study, the Li-ion batteries temperature increase during the discharge process was measured empirically and evaluated using numerical simulation. Moreover, the battery packs cooling using the water, air and water-nano composition fluids such as water-alumina, water-copper oxide, and water-gold was studied through numerical simulation. Accordingly, the battery cooling was simulated by CFD...

متن کامل

Electrochemical Characterization of Low-Cost Lithium-Iron Orthosilicate Samples as Cathode Materials of Lithium-Ion Battery

Lithium-iron-orthosilicate is one of the most promising cathode materials for Li-ion batteries due to its safety, environmental brightness and potentially low cost. In order to produce a low cost cathode material, Li2FeSiO4/C samples are synthesized via sol-gel (SG; one sample) and solid state (SS; two samples with different carbon content), starting from Fe (III) in the raw materials (lo...

متن کامل

A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...

متن کامل

EFFECT OF END GROUPS AND CHAIN LENGTH ON EXTRACTION OF LITHIUM ION BY A SERIES OF NON-CYCLIC IONOPHORES

A series of non-cyclic polyethers with different end groups and chain length were used for the extraction of lithium salt from aqueous into various organic phases viz. Chloroform, Carbon tetrachloride, 1,2-dichloroethane, to study the influence of structural variations within the extractant molecule upon the extraction selectivity and efficiency. The ionophores used were viz. DEG (I), DEGDME (I...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of loss prevention in the process industries

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2014